BRIGHT MIND PUBLISHING

Educator Insights: A Journal of Teaching Theory and Practice

Volume 01, Issue 07, July 2025 brightmindpublishing.com

ISSN (E): 3061-6964

Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

PERFORMANCE INDICATORS OF TWISTED YARNS

Yusupova. R. K.
Professor, Andijan State Technical Institute
andmiyusupova@gmail.com
+998 93 782 13 19

Abstract

This paper examines the compactness of yarn and the coefficient of friction. Namangan - 77 cotton varieties to study the possibility of producing compact yarn in the system of snow and re-spinning. The physical and mechanical properties of the compact snow and re-spinning yarn were also compared with the Uster statistical 2018 quality indicators.

Keywords: Ring spinning machine, compact device, snow and re-spinning system, physical and mechanical properties of yarn, fluff.

Introduction

During the description of the type of yarn in weaving or knitting, only specific quality indicators, i.e. irregularities, are not enough (for example, unevenness and tufting) (Fig. 1). For this, a combination of different quality criteria (for example, unevenness and smoothness) allows for a reliable conclusion. The SPI surface index allows the user to control the quality in a simple way [1, 2, 3, 4, 5, 6, 7]

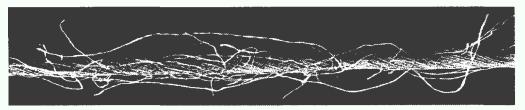


Figure 1. Unevenness and tufting

The surface index SPI allows you to see a poor quality tube (e.g., randomly occurring thinness and thickness may be within acceptable limits, but may have a negative effect on the fabric structure in terms of quantity) and opportunity it is necessary to eliminate these defects in the yarn during the rewinding process.

ERIGHT MIND PUBLISHING

Educator Insights: A Journal of Teaching Theory and Practice

Volume 01, Issue 07, July 2025 brightmindpublishing.com

ISSN (E): 3061-6964

Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

The most important parameters used to determine yarn quality are linear density, formation properties, and fiber composition. An example of a tape configuration is shown in figure 2:

Figure 2. Thread configuration.

The number of defects and mass measurements allow to assess the quality of the product. There are three types of yarn defects (Figure 3):

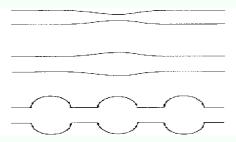


Figure 3. Thread defects

- 1. Thin areas
- 2. Thick areas
- 3. Neps

Thin areas - a decrease in mass of short length (4 mm).

Thick areas - an increase in mass, usually less than 100% and extending more than 4 mm [8, 9, 10, 11, 12, 13]

Neps - a large mass of yarn of short length (usually from 1 mm to 4 mm)

As mentioned above, another important feature of yarn is hair. Figure 4 depicts the hairiness of the yarn.

Volume 01, Issue 07, July 2025 brightmindpublishing.com

ISSN (E): 3061-6964

Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

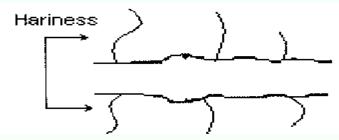


Figure 4. Yarn hair

Hair is usually determined by standard deviation, similar to CV (%). However, other parameters (U, DR, IDR) can also be considered.

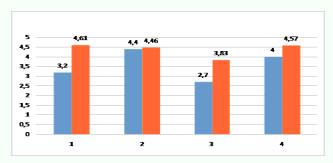


Figure 5. Yarn hair size (Neps 200 / km)

(Ne = 30) Uster Statistic 2018 Indicators for the rewind compact strip

(Ne = 30) Indorama Kokand Textile

(Ne = 30) Uster Statistic 2018 figures for a compact strip of snow

(Ne = 30) Indorama Kokand Textile, a compact yarn in the snow

(Ne = 40) Uster Statistic 2018 figures for a compact strip of snow

(Ne = 40) Indorama Kokand Textile, a compact yarn in the snow

(Ne = 40) Uster Statistic 2018 Indicators for the rewind compact strip

(Ne = 40) Indorama Kokand Textile

Indorama Kokand Tekstil compared to Uster Statistics 2018 in terms of hair yield (Ne = 30) by 1.41% on compact yarn, (Ne = 30) by 0.06% on compact yarn, (Ne = 40) in the snow compact yarn is 1.13% higher, and in the compaction yarn (Ne = 40) it is 0.57% higher. Looking at the results, we can see that the compact strip in the snow (Ne = 30) is very close to the Uster results, and the compact strip in the snow (Ne = 40) is the lowest in terms of hair density (3.83) [14, 15, 16, 17]

Volume 01, Issue 07, July 2025 brightmindpublishing.com

ISSN (E): 3061-6964

Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

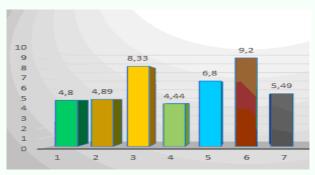


Figure 6. The fluff of the rope

(Ne = 30) re-combing compact yarn "Indorama Kokand Textile"

(Ne = 27) snow thread "Artsoft Tex Spinning"

(Ne = 32/2) Artsoft Tex Spinning

(Ne = 30) snowmobile mechanical thread "Indorama Kokand Tekstil"

(Ne = 30) snowmobile pneumatic thread "Artsoft Tex Spinning"

(Ne = 40/2) Snow-baked yarn Artsoft Tex Spinning

(Ne = 34/2) Snow-baked yarn Artsoft Tex Spinning

The diagram above shows an analysis of the fineness of yarns obtained for testing from Indorama Kokand Textile and Artsoft Tex Spinning. Analyzing the results, Indorama Kokand Tekstil (Ne = 30) has the lowest snow pneumo-mechanical yarn in hair (4.44%), while Artsoft Tex Spinning (Ne = 40/2) has the lowest snow-baked yarn. high (9.2%) and 4.76% higher.

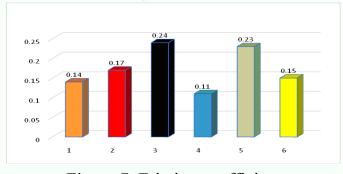


Figure 7. Friction coefficient

(Ne = 30) snowmobile mechanical thread "Indorama Kokand Tekstil"

(Ne = 30) re-combing compact yarn "Indorama Kokand Textile"

(Ne = 30) card compact yarn "Indorama Kokand Tekstil"

(Ne = 40) card pneumomechanical thread "Indorama Kokand Tekstil"

(Ne = 40) snow compact yarn "Indorama Kokand Tekstil"

(Ne = 40) re-combing compact yarn "Indorama Kokand Textile"

Volume 01, Issue 07, July 2025 brightmindpublishing.com

ISSN (E): 3061-6964

Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

According to the results of the friction coefficient obtained from Indorama Kokand Tekstil, (Ne = 40) is the lowest (0.11) in the pneumatic mechanical yarn in the snow and the highest (0.24) in the compact yarn (Ne = 30). we will see. Analyzing all the above results, we can see that the yarn spun in the compact method of re-spinning is superior to the remaining yarns in all respects [4].

And the degree to which the external quality and fluff of the yarn depends on the spinning technology [18, 19, 20, 21].

It should be noted that in the past, the pneumatic compact device had the following disadvantages:

- 1. When the stretching pair comes out of the front roller clamp, the width of the down is maintained in the normal way.
- 2. The pneumatic device would not work as a result of the short fiber being sucked out of the suction device.
- 3. It was impossible to tell if the short fibers were stuck in the hole in the suction device.

A series of studies have now produced generations of pneumatic compacts to overcome these shortcomings, with a special indicator that illuminates a red light when short fibers are stuck in the groove of a suction device. This, in turn, will address the above shortcomings [22, 23, 24, 25, 26, 27].

As a result of our research, we also conducted experiments on this compact device at the Indorama Kokand Textile JV. And we've seen how this device works.

Conclusions:

- 1. The physical and mechanical properties of the yarn spun at the Indorama Kokand Textile JV were found to be in line with Uster Statistics-2018.
- 2. The yarn spun at the Indorama Kokand Textile JV was found to be inferior to the yarn spun from Artsoft Tex Spinning.
- 3. In terms of friction, Indorama Kokand Tekstil (Ne = 40) had the lowest value (0.11) in the snow pneumo-mechanical yarn and the highest (0.24) in the compact yarn (Ne = 30).
- 4. In the compact method of re-spinning, it was determined that the spun yarn was superior to the remaining yarns in all respects.

Volume 01, Issue 07, July 2025

brightmindpublishing.com

ISSN (E): 3061-6964

Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

References

- 1. Yusupova, R. K. (2023). Advantages and disadvantages of compact yarn devices on spinning machines. Educational Research in Universal Sciences, 2(2), 458-466.
- 2.Рузматов, Ш., Юсупова, Р. К. (2024). ДАЛЬНЕЙШЕЕ СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА КРУЧЕНОЙ НИТИ. Новости образования: исследование в XXI веке, 2(20), 292-299.
- 3.Юсупова, Р. К. (2023). СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА КРУЧЕНОЙ НИТИ. Научный Фокус, 1(7), 507-516.
- 4.Юсупова, Р. К. (2023). УСОВЕРШЕНСТВОВАНИЕ УСТРОЙСТВА КРУТИЛЬНОЙ МАШИНЫ. JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH, 6(3), 163-171.
- 5.Rano Y., Asadillo U., Go'Zaloy M. HEAT-CONDUCTING PROPERTIES OF POLYMERIC MATERIALS //Universum: технические науки. 2021. №. 2-4 (83). С. 29-31.
- 6. Джалилов, М. Л., Хаджиева, С. С., & Алижонова, Х. (2024). КОЛЕБАНИЯ КУСОЧНО-ОДНОРОДНЫХ ДВУХСЛОЙНЫХ ПЛАСТИН. Новости образования: исследование в XXI веке, 2(20), 248-254.
- 7. Каюмов У. А., Хаджиева С. С. НЕКОТОРЫЕ РЕКОМЕНДАЦИЙ ПО ПРИМЕНЕНИЮ ПОРОШКОВЫХ СПЛАВОВ ПРИ ВОССТАНОВЛЕНИИ ДЕТАЛЕЙ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ТЕХНИКИ СПОСОБАМИ ПЛАЗМЕННОЙ НАПЛАВКИ И НАПЫЛЕНИЯ //The 4th International scientific and practical conference "Science and education: problems, prospects and innovations" (December 29-31, 2020) CPN Publishing Group, Kyoto, Japan. 2020. 808 p. 2020. C. 330.
- 8. Khadjieva S. S. VIBRATIONS OF PIECE-HOMOGENEOUS PLATES //Educational Research in Universal Sciences. 2023. T. 2. №. 2. C. 488-496.
- 9. Хаджиева С. С. ОПРЕДЕЛЕНИЕ СТАБИЛЬНОСТИ ВАЛОВ В МАШИНОСТРОЕНИИ //Научный Фокус. -2023. Т. 1. №. 7. С. 446-453.
- 10. Хаджиева С. С. СОВРЕМЕННЫЕ КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ //Научный Фокус. -2023. Т. 1. №. 1. С. 1574-1580.

Volume 01, Issue 07, July 2025 brightmindpublishing.com

ISSN (E): 3061-6964

Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

- 11.Djuraev A, Mamaxonov A. Yuldashev K "Texnologik mashinalar zanjirli uzatmalari konstruksiyalarini takomillashtirish va parametrlarini asoslash" Monografiya. "Fan va texnologiya". Toshkent 2019.
- 12.Djuraev A, Mamaxonov A. Yuldashev K "Improvement of the term of service life of the drive roller chain of transmission". International Journal of Advanced Research in Scince, Enjineering and Technology. Vol. 6, Issue 3, March 2019 R. 8508-8514.
- 13. Джураев А, Мамахонов А, Юлдашев К, Алиев Э "Определение амплитуды собственных колебании оси на упругих опорах цепи передачи". ФерПИ "Илмий техника журнали" (спец.вып), Фарғона-2018. 64-67 б.
- 14.Джураев А, Мамахонов А, Юлдашев К, Алиев Э Цепная передача Патент. Рес. Узб. № IAP 06200 30.04.2020, Бюл..,№4.
- 15. Kadyrov, V. A., Artikova Muhayyo Botiralievna, and Umidbek Ruzibaevich Axunov. "Theatre of Action-A Didactic Concept for the Development of Physical Education and Creativity." Galaxy International Interdisciplinary Research Journal 10.5 (2022): 960-963.
- 16. Artikova, Muhayyo Botiralievna. "PECULIARITIES OF METHODICAL WORK IN PREPARING PRESCHOOL CHILDREN FOR SCHOOL." Science and Education 2.1 (2021): 297-300.