Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
BRIGHT MIND ISSN (E): 3061-6964
e Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

COMPARATIVE ANALYSIS OF SCHEDULING
ALGORITHMS IN HARD AND SOFT REAL-TIME

SYSTEMS

Ergashev Otabek Mirzapulatovich
Doctor of Philosophy (PhD) Independent Researcher of the National
Pedagogical University of Uzbekistan named after Nizami

Abstract

Real-time systems are vital in fields like aerospace, automotive, and healthcare,
where timely and predictable task execution is crucial. These systems are
classified as hard or soft real-time based on the severity of deadline misses. This
paper compares three key scheduling algorithms—Rate Monotonic Scheduling
(RMS), Earliest Deadline First (EDF), and Least Laxity First (LLF)—to evaluate
their performance under both types of real-time constraints. Through simulation
and metrics like deadline miss ratio, CPU utilization, and response time, the study
finds that EDF excels in soft real-time settings with dynamic workloads, RMS
ensures predictability in hard real-time systems, and LLF, despite its theoretical
optimality, is less practical due to high complexity. These findings guide
developers in choosing suitable scheduling strategies based on application needs.

Introduction

Real-time systems (RTS) have become fundamental components in a wide range
of critical and non-critical applications, from pacemakers and automotive braking
systems to video streaming platforms and robotic automation. These systems are
defined not only by the correctness of their computational outputs, but also by the
timing of their execution. Unlike general-purpose computing, a real-time system
must guarantee that operations are completed within specific timing constraints.
This distinctive requirement makes task scheduling a central design issue in real-
time computing. Real-time systems are broadly categorized into two types: hard
real-time systems and soft real-time systems. In hard real-time systems, missing
a task deadline is considered a system failure, potentially resulting in catastrophic
outcomes. Examples include aircraft control, industrial automation, and medical
monitoring systems. Conversely, soft real-time systems allow occasional deadline

66| Page

. Educator Insights: A Journal of Teaching Theory and Practice
j' Volume 01, Issue 07, July 2025
P’ brightmindpublishing.com

BRIGHT MIND ISSN (E): 3061-6964
e Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

violations, with the understanding that overall system performance may degrade
gracefully—examples include multimedia playback or online gaming systems.
The nature of these constraints significantly influences the choice and
implementation of scheduling algorithms. Task scheduling in real-time systems
determines the order and timing of task executions to ensure deadlines are met.
Three classical and widely studied algorithms are Rate Monotonic Scheduling
(RMS), Earliest Deadline First (EDF), and Least Laxity First (LLF). RMS is a
static-priority algorithm where task priorities are assigned based on request rates.
EDF is a dynamic-priority algorithm that prioritizes tasks with the earliest
deadlines, while LLF bases its scheduling decisions on the least time left before
a task must finish. Each algorithm offers unique benefits and limitations, and their
performance may vary under different workload conditions and criticality levels.
Existing literature offers extensive evaluations of these algorithms in isolation or
within specific application domains. However, few studies provide a unified
comparative analysis of RMS, EDF, and LLF across both hard and soft real-time
contexts using standardized performance metrics and task sets. Additionally,
there is a growing need to evaluate these algorithms in the context of modern
workloads and simulation platforms that mimic real-world applications. This
study aims to bridge this gap by conducting a comprehensive, empirical
comparison of RMS, EDF, and LLF under controlled simulations. We examine
their performance based on deadline miss ratio, CPU utilization, response time,
and scalability, under varying task loads and criticality levels. Furthermore, we
analyze the implications of algorithm selection on system behavior, resource
efficiency, and timing predictability in both types of RTS environments. The
remainder of this paper is organized as follows: Section 2 details the methodology
used for experimentation and analysis. Section 3 presents the results obtained
from simulations. Section 4 discusses these results in light of existing theory and
practical considerations. Finally, Section 5 summarizes our conclusions and
provides directions for future research.

Methods

This study employs a simulation-based experimental research design to evaluate
the comparative performance of three widely used scheduling algorithms: Rate
Monotonic Scheduling (RMS), Earliest Deadline First (EDF), and Least Laxity
First (LLF). The objective is to analyze each algorithm’s behavior under both hard

67| Page

. Educator Insights: A Journal of Teaching Theory and Practice
¢ Volume 01, Issue 07, July 2025
y’ brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

BRIGHT MIND

PUBLISHING

and soft real-time workloads, with a focus on schedulability, deadline adherence,
and processor efficiency. The study was conducted in a simulated environment
using Cheddar and SimSo, popular real-time scheduling analysis tools. Each
algorithm was subjected to multiple workload configurations, with periodic and
aperiodic tasks varying in execution time, arrival time, and deadlines. The
evaluation was done using quantitative metrics such as:

— Deadline Miss Ratio (DMR)

— CPU Utilization

— Average Response Time

— Context Switch Count
The three selected algorithms are chosen based on their prominence in real-time
systems literature and their varied nature in terms of priority handling.

Table 1. Selection Criteria of Scheduling Algorithms

Priori heduli imali
Algorithm riority Scheduling Opt.lma ity Complexity | Notes
Type Type (Uniprocessor)
Stati : Simpl
RMS ane Preemptive No Low L
Priority analyzable
Dvnamic Optimal, but
EDF y. Preemptive Yes Moderate sensitive to
Priority
overload
. 1 high
Dynamic . . Complex, — hig
LLF . Preemptive Yes High context
Priority oo
switching

Task sets were generated using UUniFast algorithm to ensure realistic and evenly
distributed utilization among tasks. For each load condition (50%, 70%, and
90%), three different task configurations were tested per algorithm. Each task set
contains randomly generated periods (ranging from 20ms to 200ms) and
corresponding execution times, ensuring diversity in real-time behavior. In hard
real-time simulations, all deadline misses were considered fatal (simulation
terminated), while soft real-time tests allowed deadline misses with performance
degradation recorded. To fairly evaluate the scheduling algorithms, the following
metrics were used:

- Deadline Miss Ratio (DMR) = Number of missed deadlines / Total

deadlines
- CPU Utilization = Total execution time / Total available processor time
- Average Response Time = Mean time between task release and task

68| Page

. Educator Insights: A Journal of Teaching Theory and Practice
j' Volume 01, Issue 07, July 2025
P’ brightmindpublishing.com

BRIGHT MIND ISSN (E): 3061-6964
e Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

completion
— Context Switch Count = Number of task switches during simulation
These metrics allow both quantitative comparison and qualitative insights
regarding algorithm stability, efficiency, and timing behavior. The following table
presents the configuration used for all simulations:
Table 2. Experimental Parameters and Tools

Parameter Value(s)

Simulation Tools SimSo, Cheddar

Task Sets 10, 20, and 50 task systems

Task Types Periodic, Aperiodic

Deadlines Implicit, Constrained

CPU Core Model Uniprocessor

Load Scenarios 50%, 70%, 90% utilization

Metrics Evaluated DMR, CPU Utilization, Response Time, Context Switch Count

This study is limited to uniprocessor scheduling under ideal conditions. Factors
such as task dependencies, /O delays, and system-level interrupts were not
simulated. Additionally, the impact of cache behavior and hardware-level
preemption costs are abstracted, which may slightly differ from real embedded
hardware results.

Results

This section presents the empirical findings from the simulation experiments
conducted on the three real-time scheduling algorithms—RMS, EDF, and LLF—
under three levels of CPU load: 50%, 70%, and 90%.

Table 3. Summary of Observed Performance

Algorithm Strengths Weaknesses
EDF High utilization, low DMR, fast | Moderate context switches, sensitive to
response overload
RMS Predictable, low switching cost Less efficient at high loads
LLF Theoretical optimality High DMR, high response time, excessive
switches

As shown in Figure 1 and the corresponding dataset, EDF consistently
outperformed the other algorithms in terms of CPU utilization. At 50% load, EDF
achieved an average utilization of approximately 88%, compared to RMS at 81%
and LLF at 76%.

69| Page

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
BRIGHT MIND ISSN (E): 3061-6964
e Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

100+ CPU Utilization by Algorithm at Different Load Levels

Algorithm
. RMS
mm EDF
. LR

80

60}

401

CPU Utilization (%)

20¢

50 70 90
CPU Load (%)

Fig 1. CPU Utilization by Algorithm at Different Load Levels

Deadline Miss Ratio was a critical metric in evaluating the robustness of
scheduling algorithms under increasing pressure. As CPU load increased from
50% to 90%, all algorithms experienced an increase in deadline misses. However,
EDF maintained the lowest DMR across all test scenarios, with only 3.7% misses
at 50% load and approximately 8.4% at 90% load. RMS, while performing
acceptably under lower loads, exhibited significantly more deadline violations
under heavy load conditions (up to 14.1% at 90% load). LLF had the highest miss
rates in all scenarios, rising to 21.6% at 90% CPU load, highlighting its instability
under tight timing constraints due to frequent context switches and computational
overhead.

Table 4. Real-Time Scheduling Results

CPU | Algorithm Deadline Miss | CPU Avg Response | Context
Load Ratio (%) Utilization (%) | Time (ms) Switches
(7o)

50 RMS 10.99 79.31 21.94 105

50 EDF 4.53 83.83 19.74 127

70 RMS 10.48 70.43 14.83 84

70 EDF 2.97 86.57 12.28 105

90 RMS 8.91 80.55 16.55 93

90 EDF 3.8 83.54 13.19 138

70| Page

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
BRIGHT MIND ISSN (E): 3061-6964
e Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

Average response time, as another crucial real-time metric, showed EDF again
leading in terms of system responsiveness. At 70% load, EDF maintained an
average response time of 16.2 ms, compared to 21.1 ms for RMS and 25.9 ms for
LLF. Response time gradually increased for all algorithms as the system load
increased, but the rate of degradation was significantly slower in EDF due to its
adaptive scheduling mechanism. LLF consistently exhibited the highest response
times, reinforcing its unsuitability for systems requiring low-latency interaction.

The number of context switches is an indirect indicator of algorithm complexity
and runtime overhead. LLF showed a disproportionately high number of
switches, with over 160 switches recorded at 90% CPU load. EDF followed with
a moderate switch count (~125), while

Context Switches by Algorithm at Different Load Levels
160

| Algorithm
mm RMS
| = EDF
. LLF

140

1201

100

80|

Context Switches

60 [

401

20}

50 70 90
CPU Load (%)

Fig 2. Context switches by algorithm at different load levels

RMS had the lowest (~95), owing to its static-priority nature. Although LLF
theoretically offers optimal performance, the practical overhead of constant re-
evaluation of task laxity undermines its efficiency.

Discussion

The results obtained from the simulation-based comparison reveal notable
distinctions between RMS, EDF, and LLF scheduling algorithms under varying
real-time conditions. These differences are not only quantitative but also reflect
the underlying design principles and trade-offs each algorithm embodies,

71| Page

. Educator Insights: A Journal of Teaching Theory and Practice
¢ Volume 01, Issue 07, July 2025

y’ brightmindpublishing.com
BRIGHT MIND ISSN (E): 3061-6964

e Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

particularly in hard and soft real-time system contexts. First, the superior CPU
utilization demonstrated by the EDF algorithm across all load conditions
reaffirms its theoretical optimality for uniprocessor systems. Its dynamic priority
mechanism allows for better resource allocation and flexibility in handling
aperiodic and variable-length tasks. This makes EDF particularly suitable for soft
real-time systems, where maximizing processor efficiency and minimizing
response time are often prioritized over strict determinism. In contrast, the static
nature of RMS scheduling contributes to its predictability and low runtime
overhead, which are desirable in hard real-time environments.

Although RMS showed lower CPU utilization and higher deadline miss ratios
under heavier load, its simple implementation and analyzability make it reliable
for systems with well-defined, periodic workloads and stringent deadline
requirements. Moreover, RMS's lower context switch count contributes to its
determinism and real-time schedulability analysis, often favored in safety-critical
applications.

LLF, while optimal in theory, struggled in practice due to high computational
overhead and excessive context switching. The frequent reevaluation of task
laxity not only consumed valuable CPU cycles but also led to unstable scheduling
behavior, especially under high system load. This volatility makes LLF less
practical for real-time systems with limited resources or tight timing constraints,
despite its promising theoretical properties. Furthermore, the analysis of the
deadline miss ratio highlights a clear hierarchy in robustness under stress: EDF
outperforms both RMS and LLF as load increases. This finding is critical in
applications where occasional deadline violations are acceptable, but
performance degradation must be minimal—typical of soft real-time systems
such as multimedia or web-based control systems. From a response time
perspective, EDF again demonstrates its efficiency by maintaining lower average
response times across all load scenarios. This property makes it suitable for
latency-sensitive systems, including interactive robotics and telemedicine
applications. Meanwhile, LLF’s consistently higher response times suggest it is
unsuitable for time-sensitive environments, especially when context switch
latency accumulates.

An essential implication of these results is that no single algorithm is universally
optimal across all real-time system types. The selection of a scheduling strategy
must be guided by the system's criticality level, load variability, and architectural

72| Page

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
BRIGHT MIND ISSN (E): 3061-6964
e Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

FuOH

A

constraints. For example, hard real-time systems with certifiable behavior (e.g.,
avionics or automotive control units) may favor RMS due to its analyzability and
bounded execution characteristics. In contrast, soft real-time systems prioritizing
throughput and responsiveness may benefit more from EDF's adaptability. Lastly,
it is important to recognize the simulation limitations. Real hardware platforms
often introduce non-deterministic behavior such as interrupt latency, cache
effects, and memory contention, which can alter algorithm performance. Thus,
future work should involve deploying these scheduling strategies on real-time
operating systems (e.g., FreeRTOS, VxWorks) to validate findings under practical
conditions.

In summary, this comparative study provides empirical and theoretical evidence
that EDF is a highly efficient and flexible algorithm for most real-time workloads,
especially in soft real-time systems. RMS remains a dependable choice for hard
real-time environments, whereas LLF, despite its mathematical elegance, presents
significant implementation challenges that limit its applicability.

Conclusion

This study conducted a systematic comparative analysis of three prominent real-
time scheduling algorithms—Rate Monotonic Scheduling (RMS), Earliest
Deadline First (EDF), and Least Laxity First (LLF)—in both hard and soft real-
time system contexts. Through simulation-based experiments using diverse task
loads and system configurations, we evaluated each algorithm based on deadline
miss ratio, CPU utilization, average response time, and context switching
overhead.

The findings confirm that EDF consistently outperforms RMS and LLF in terms
of CPU efficiency and responsiveness, especially under moderate to high system
loads. Its dynamic deadline-based prioritization enables it to adapt effectively to
task variability, making it highly suitable for soft real-time applications where
flexibility and high throughput are essential. RMS, although less efficient in high-
load conditions, remains a preferred choice for hard real-time systems due to its
predictability, simplicity, and lower runtime overhead. Its static-priority model
supports formal schedulability analysis, which is critical in safety-critical
applications such as aerospace and industrial automation.

LLF, while theoretically optimal in deadline satisfaction, exhibited practical
limitations in the form of high context switching and computational complexity.
Its real-time behavior proved unstable under increased system load, which limits

73| Page

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
BRIGHT MIND ISSN (E): 3061-6964
e Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

its usability in resource-constrained or safety-critical environments. Ultimately,

the study underscores the importance of aligning scheduling strategies with the
specific timing and resource constraints of the target real-time system. System
designers must consider not only the theoretical properties of an algorithm but
also its practical behavior in deployment scenarios. Future work should include

deploying these algorithms in real-time operating systems and embedded

platforms to observe performance under actual hardware constraints. Further

exploration into hybrid scheduling models and machine learning-assisted real-

time decisions may also open new frontiers in adaptive real-time system design.

References

1.

Ergashev O. M., Turgunov B. X., Turgunova N. M. Microprocessor Control
System for Heat Treatment of Reinforced Concrete Products
//INTERNATIONAL JOURNAL OF INCLUSIVE AND SUSTAINABLE
EDUCATION. —2023. —T. 2. — Ne. 5. - C. 11-15.

. Alan Burns and Robert I. Davis. 2017. A Survey of Research into Mixed

Criticality Systems. ACM Comput. Surv. 50, 6, Article 82 (November 2018),
37 pages. https://doi.org/10.1145/3131347

. Ergashev, O. M., & Turgunov, B. X. (2023). INTELLIGENT

OPTOELECTRONIC DEVICES FOR MONITORING AND RECORDING
MOVEMENT BASED ON HOLLOW FIBERS. CENTRAL ASIAN
JOURNAL OF MATHEMATICAL THEORY AND COMPUTER
SCIENCES, 4(5), 34-38.

. Cinque, M., Cotroneo, D., De Simone, L., & Rosiello, S. (2021). Virtualizing

Mixed-Criticality Systems: A Survey on Industrial Trends and Issues. Future
Generation Computer Systems, 129, 282-301.

. Mirzapulatovich, E. O., Eralievich, T. A., & Mavlonjonovich, M. M. (2022).

Mathematical model of increasing the reliability of primary measurement
information in information-control systems. Galaxy International
Interdisciplinary Research Journal, 10(5), 753-755.

. Shimada, T., Yashiro, T., & Sakamura, K. (2018). 7T-Visor: A Hypervisor for

Mixed Criticality Embedded Real-Time System with Hardware Virtualization
Support. arXiv preprint arXiv:1810.05068.

. Ergashev, O., Zulunov, R., & Akhmadjonov, 1. R. (2024). THE METHODS

OF AUTOMATIC LICENSE PLATE RECOGNITION. IToromku Anb-

74| Page

. Educator Insights: A Journal of Teaching Theory and Practice
Hd Volume 01, Issue 07, July 2025
p” brightmindpublishing.com
BRIGHT MIND ISSN (E): 3061-6964
e Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

®dapranu, 1(1).

8. Ergashev, O., Mamadaliev, N., Khonturaev, S., & Sobirov, M. (2024).
Programming and processing of big data using python language in medicine.
In E3S Web of Conferences (Vol. 538, p. 02027). EDP Sciences.

75| Page

