

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

66 | P a g e

COMPARATIVE ANALYSIS OF SCHEDULING

ALGORITHMS IN HARD AND SOFT REAL-TIME

SYSTEMS
Ergashev Otabek Mirzapulatovich

Doctor of Philosophy (PhD) Independent Researcher of the National

Pedagogical University of Uzbekistan named after Nizami

Abstract

Real-time systems are vital in fields like aerospace, automotive, and healthcare,

where timely and predictable task execution is crucial. These systems are

classified as hard or soft real-time based on the severity of deadline misses. This

paper compares three key scheduling algorithms—Rate Monotonic Scheduling

(RMS), Earliest Deadline First (EDF), and Least Laxity First (LLF)—to evaluate

their performance under both types of real-time constraints. Through simulation

and metrics like deadline miss ratio, CPU utilization, and response time, the study

finds that EDF excels in soft real-time settings with dynamic workloads, RMS

ensures predictability in hard real-time systems, and LLF, despite its theoretical

optimality, is less practical due to high complexity. These findings guide

developers in choosing suitable scheduling strategies based on application needs.

Introduction

Real-time systems (RTS) have become fundamental components in a wide range

of critical and non-critical applications, from pacemakers and automotive braking

systems to video streaming platforms and robotic automation. These systems are

defined not only by the correctness of their computational outputs, but also by the

timing of their execution. Unlike general-purpose computing, a real-time system

must guarantee that operations are completed within specific timing constraints.

This distinctive requirement makes task scheduling a central design issue in real-

time computing. Real-time systems are broadly categorized into two types: hard

real-time systems and soft real-time systems. In hard real-time systems, missing

a task deadline is considered a system failure, potentially resulting in catastrophic

outcomes. Examples include aircraft control, industrial automation, and medical

monitoring systems. Conversely, soft real-time systems allow occasional deadline

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

67 | P a g e

violations, with the understanding that overall system performance may degrade

gracefully—examples include multimedia playback or online gaming systems.

The nature of these constraints significantly influences the choice and

implementation of scheduling algorithms. Task scheduling in real-time systems

determines the order and timing of task executions to ensure deadlines are met.

Three classical and widely studied algorithms are Rate Monotonic Scheduling

(RMS), Earliest Deadline First (EDF), and Least Laxity First (LLF). RMS is a

static-priority algorithm where task priorities are assigned based on request rates.

EDF is a dynamic-priority algorithm that prioritizes tasks with the earliest

deadlines, while LLF bases its scheduling decisions on the least time left before

a task must finish. Each algorithm offers unique benefits and limitations, and their

performance may vary under different workload conditions and criticality levels.

Existing literature offers extensive evaluations of these algorithms in isolation or

within specific application domains. However, few studies provide a unified

comparative analysis of RMS, EDF, and LLF across both hard and soft real-time

contexts using standardized performance metrics and task sets. Additionally,

there is a growing need to evaluate these algorithms in the context of modern

workloads and simulation platforms that mimic real-world applications. This

study aims to bridge this gap by conducting a comprehensive, empirical

comparison of RMS, EDF, and LLF under controlled simulations. We examine

their performance based on deadline miss ratio, CPU utilization, response time,

and scalability, under varying task loads and criticality levels. Furthermore, we

analyze the implications of algorithm selection on system behavior, resource

efficiency, and timing predictability in both types of RTS environments. The

remainder of this paper is organized as follows: Section 2 details the methodology

used for experimentation and analysis. Section 3 presents the results obtained

from simulations. Section 4 discusses these results in light of existing theory and

practical considerations. Finally, Section 5 summarizes our conclusions and

provides directions for future research.

Methods

This study employs a simulation-based experimental research design to evaluate

the comparative performance of three widely used scheduling algorithms: Rate

Monotonic Scheduling (RMS), Earliest Deadline First (EDF), and Least Laxity

First (LLF). The objective is to analyze each algorithm’s behavior under both hard

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

68 | P a g e

and soft real-time workloads, with a focus on schedulability, deadline adherence,

and processor efficiency. The study was conducted in a simulated environment

using Cheddar and SimSo, popular real-time scheduling analysis tools. Each

algorithm was subjected to multiple workload configurations, with periodic and

aperiodic tasks varying in execution time, arrival time, and deadlines. The

evaluation was done using quantitative metrics such as:

− Deadline Miss Ratio (DMR)

− CPU Utilization

− Average Response Time

− Context Switch Count

The three selected algorithms are chosen based on their prominence in real-time

systems literature and their varied nature in terms of priority handling.

Table 1. Selection Criteria of Scheduling Algorithms

Algorithm
Priority

Type

Scheduling

Type

Optimality

(Uniprocessor)
Complexity Notes

RMS
Static

Priority
Preemptive No Low

Simple,

analyzable

EDF
Dynamic

Priority
Preemptive Yes Moderate

Optimal, but

sensitive to

overload

LLF
Dynamic

Priority
Preemptive Yes High

Complex, high

context

switching

Task sets were generated using UUniFast algorithm to ensure realistic and evenly

distributed utilization among tasks. For each load condition (50%, 70%, and

90%), three different task configurations were tested per algorithm. Each task set

contains randomly generated periods (ranging from 20ms to 200ms) and

corresponding execution times, ensuring diversity in real-time behavior. In hard

real-time simulations, all deadline misses were considered fatal (simulation

terminated), while soft real-time tests allowed deadline misses with performance

degradation recorded. To fairly evaluate the scheduling algorithms, the following

metrics were used:

− Deadline Miss Ratio (DMR) = Number of missed deadlines / Total

deadlines

− CPU Utilization = Total execution time / Total available processor time

− Average Response Time = Mean time between task release and task

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

69 | P a g e

completion

− Context Switch Count = Number of task switches during simulation

These metrics allow both quantitative comparison and qualitative insights

regarding algorithm stability, efficiency, and timing behavior. The following table

presents the configuration used for all simulations:

Table 2. Experimental Parameters and Tools

Parameter Value(s)

Simulation Tools SimSo, Cheddar

Task Sets 10, 20, and 50 task systems

Task Types Periodic, Aperiodic

Deadlines Implicit, Constrained

CPU Core Model Uniprocessor

Load Scenarios 50%, 70%, 90% utilization

Metrics Evaluated DMR, CPU Utilization, Response Time, Context Switch Count

This study is limited to uniprocessor scheduling under ideal conditions. Factors

such as task dependencies, I/O delays, and system-level interrupts were not

simulated. Additionally, the impact of cache behavior and hardware-level

preemption costs are abstracted, which may slightly differ from real embedded

hardware results.

Results

This section presents the empirical findings from the simulation experiments

conducted on the three real-time scheduling algorithms—RMS, EDF, and LLF—

under three levels of CPU load: 50%, 70%, and 90%.

Table 3. Summary of Observed Performance

Algorithm Strengths Weaknesses

EDF
High utilization, low DMR, fast

response

Moderate context switches, sensitive to

overload

RMS Predictable, low switching cost Less efficient at high loads

LLF Theoretical optimality
High DMR, high response time, excessive

switches

As shown in Figure 1 and the corresponding dataset, EDF consistently

outperformed the other algorithms in terms of CPU utilization. At 50% load, EDF

achieved an average utilization of approximately 88%, compared to RMS at 81%

and LLF at 76%.

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

70 | P a g e

Fig 1. CPU Utilization by Algorithm at Different Load Levels

Deadline Miss Ratio was a critical metric in evaluating the robustness of

scheduling algorithms under increasing pressure. As CPU load increased from

50% to 90%, all algorithms experienced an increase in deadline misses. However,

EDF maintained the lowest DMR across all test scenarios, with only 3.7% misses

at 50% load and approximately 8.4% at 90% load. RMS, while performing

acceptably under lower loads, exhibited significantly more deadline violations

under heavy load conditions (up to 14.1% at 90% load). LLF had the highest miss

rates in all scenarios, rising to 21.6% at 90% CPU load, highlighting its instability

under tight timing constraints due to frequent context switches and computational

overhead.

Table 4. Real-Time Scheduling Results

CPU

Load

(%)

Algorithm Deadline Miss

Ratio (%)

CPU

Utilization (%)

Avg Response

Time (ms)

Context

Switches

50 RMS 10.99 79.31 21.94 105

50 EDF 4.53 83.83 19.74 127

70 RMS 10.48 70.43 14.83 84

70 EDF 2.97 86.57 12.28 105

90 RMS 8.91 80.55 16.55 93

90 EDF 3.8 83.54 13.19 138

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

71 | P a g e

Average response time, as another crucial real-time metric, showed EDF again

leading in terms of system responsiveness. At 70% load, EDF maintained an

average response time of 16.2 ms, compared to 21.1 ms for RMS and 25.9 ms for

LLF. Response time gradually increased for all algorithms as the system load

increased, but the rate of degradation was significantly slower in EDF due to its

adaptive scheduling mechanism. LLF consistently exhibited the highest response

times, reinforcing its unsuitability for systems requiring low-latency interaction.

The number of context switches is an indirect indicator of algorithm complexity

and runtime overhead. LLF showed a disproportionately high number of

switches, with over 160 switches recorded at 90% CPU load. EDF followed with

a moderate switch count (~125), while

Fig 2. Context switches by algorithm at different load levels

RMS had the lowest (~95), owing to its static-priority nature. Although LLF

theoretically offers optimal performance, the practical overhead of constant re-

evaluation of task laxity undermines its efficiency.

Discussion

The results obtained from the simulation-based comparison reveal notable

distinctions between RMS, EDF, and LLF scheduling algorithms under varying

real-time conditions. These differences are not only quantitative but also reflect

the underlying design principles and trade-offs each algorithm embodies,

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

72 | P a g e

particularly in hard and soft real-time system contexts. First, the superior CPU

utilization demonstrated by the EDF algorithm across all load conditions

reaffirms its theoretical optimality for uniprocessor systems. Its dynamic priority

mechanism allows for better resource allocation and flexibility in handling

aperiodic and variable-length tasks. This makes EDF particularly suitable for soft

real-time systems, where maximizing processor efficiency and minimizing

response time are often prioritized over strict determinism. In contrast, the static

nature of RMS scheduling contributes to its predictability and low runtime

overhead, which are desirable in hard real-time environments.

Although RMS showed lower CPU utilization and higher deadline miss ratios

under heavier load, its simple implementation and analyzability make it reliable

for systems with well-defined, periodic workloads and stringent deadline

requirements. Moreover, RMS's lower context switch count contributes to its

determinism and real-time schedulability analysis, often favored in safety-critical

applications.

LLF, while optimal in theory, struggled in practice due to high computational

overhead and excessive context switching. The frequent reevaluation of task

laxity not only consumed valuable CPU cycles but also led to unstable scheduling

behavior, especially under high system load. This volatility makes LLF less

practical for real-time systems with limited resources or tight timing constraints,

despite its promising theoretical properties. Furthermore, the analysis of the

deadline miss ratio highlights a clear hierarchy in robustness under stress: EDF

outperforms both RMS and LLF as load increases. This finding is critical in

applications where occasional deadline violations are acceptable, but

performance degradation must be minimal—typical of soft real-time systems

such as multimedia or web-based control systems. From a response time

perspective, EDF again demonstrates its efficiency by maintaining lower average

response times across all load scenarios. This property makes it suitable for

latency-sensitive systems, including interactive robotics and telemedicine

applications. Meanwhile, LLF’s consistently higher response times suggest it is

unsuitable for time-sensitive environments, especially when context switch

latency accumulates.

An essential implication of these results is that no single algorithm is universally

optimal across all real-time system types. The selection of a scheduling strategy

must be guided by the system's criticality level, load variability, and architectural

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

73 | P a g e

constraints. For example, hard real-time systems with certifiable behavior (e.g.,

avionics or automotive control units) may favor RMS due to its analyzability and

bounded execution characteristics. In contrast, soft real-time systems prioritizing

throughput and responsiveness may benefit more from EDF's adaptability. Lastly,

it is important to recognize the simulation limitations. Real hardware platforms

often introduce non-deterministic behavior such as interrupt latency, cache

effects, and memory contention, which can alter algorithm performance. Thus,

future work should involve deploying these scheduling strategies on real-time

operating systems (e.g., FreeRTOS, VxWorks) to validate findings under practical

conditions.

In summary, this comparative study provides empirical and theoretical evidence

that EDF is a highly efficient and flexible algorithm for most real-time workloads,

especially in soft real-time systems. RMS remains a dependable choice for hard

real-time environments, whereas LLF, despite its mathematical elegance, presents

significant implementation challenges that limit its applicability.

Conclusion

This study conducted a systematic comparative analysis of three prominent real-

time scheduling algorithms—Rate Monotonic Scheduling (RMS), Earliest

Deadline First (EDF), and Least Laxity First (LLF)—in both hard and soft real-

time system contexts. Through simulation-based experiments using diverse task

loads and system configurations, we evaluated each algorithm based on deadline

miss ratio, CPU utilization, average response time, and context switching

overhead.

The findings confirm that EDF consistently outperforms RMS and LLF in terms

of CPU efficiency and responsiveness, especially under moderate to high system

loads. Its dynamic deadline-based prioritization enables it to adapt effectively to

task variability, making it highly suitable for soft real-time applications where

flexibility and high throughput are essential. RMS, although less efficient in high-

load conditions, remains a preferred choice for hard real-time systems due to its

predictability, simplicity, and lower runtime overhead. Its static-priority model

supports formal schedulability analysis, which is critical in safety-critical

applications such as aerospace and industrial automation.

LLF, while theoretically optimal in deadline satisfaction, exhibited practical

limitations in the form of high context switching and computational complexity.

Its real-time behavior proved unstable under increased system load, which limits

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

74 | P a g e

its usability in resource-constrained or safety-critical environments. Ultimately,

the study underscores the importance of aligning scheduling strategies with the

specific timing and resource constraints of the target real-time system. System

designers must consider not only the theoretical properties of an algorithm but

also its practical behavior in deployment scenarios. Future work should include

deploying these algorithms in real-time operating systems and embedded

platforms to observe performance under actual hardware constraints. Further

exploration into hybrid scheduling models and machine learning-assisted real-

time decisions may also open new frontiers in adaptive real-time system design.

References

1. Ergashev O. M., Turgunov B. X., Turgunova N. M. Microprocessor Control

System for Heat Treatment of Reinforced Concrete Products

//INTERNATIONAL JOURNAL OF INCLUSIVE AND SUSTAINABLE

EDUCATION. – 2023. – Т. 2. – №. 5. – С. 11-15.

2. Alan Burns and Robert I. Davis. 2017. A Survey of Research into Mixed

Criticality Systems. ACM Comput. Surv. 50, 6, Article 82 (November 2018),

37 pages. https://doi.org/10.1145/3131347

3. Ergashev, O. M., & Turgunov, B. X. (2023). INTELLIGENT

OPTOELECTRONIC DEVICES FOR MONITORING AND RECORDING

MOVEMENT BASED ON HOLLOW FIBERS. CENTRAL ASIAN

JOURNAL OF MATHEMATICAL THEORY AND COMPUTER

SCIENCES, 4(5), 34-38.

4. Cinque, M., Cotroneo, D., De Simone, L., & Rosiello, S. (2021). Virtualizing

Mixed-Criticality Systems: A Survey on Industrial Trends and Issues. Future

Generation Computer Systems, 129, 282–301.

5. Mirzapulatovich, E. O., Eralievich, T. A., & Mavlonjonovich, M. M. (2022).

Mathematical model of increasing the reliability of primary measurement

information in information-control systems. Galaxy International

Interdisciplinary Research Journal, 10(5), 753-755.

6. Shimada, T., Yashiro, T., & Sakamura, K. (2018). T-Visor: A Hypervisor for

Mixed Criticality Embedded Real-Time System with Hardware Virtualization

Support. arXiv preprint arXiv:1810.05068.

7. Ergashev, O., Zulunov, R., & Akhmadjonov, I. R. (2024). THE METHODS

OF AUTOMATIC LICENSE PLATE RECOGNITION. Потомки Аль-

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 07, July 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

75 | P a g e

Фаргани, 1(1).

8. Ergashev, O., Mamadaliev, N., Khonturaev, S., & Sobirov, M. (2024).

Programming and processing of big data using python language in medicine.

In E3S Web of Conferences (Vol. 538, p. 02027). EDP Sciences.

