

STRATEGIES FOR ENHANCING THE EARTHQUAKE RESISTANCE AND ENSURING THE SAFETY OF BUILDINGS AND STRUCTURES

Yulborsov Fakhridin Khamidullayevich

Assistant of the Department of Civil Engineering

Andijan State Technical Institute

Abstract

This article analyzes modern approaches to enhancing the seismic resilience of buildings and structures in Uzbekistan. The study encompasses seismic modeling, soil-structure interaction, advanced construction materials, and monitoring technologies to develop structural solutions. Based on simulation results, empirical assessments, and economic analyses, practical recommendations are provided. The article also highlights differences between national regulations and international standards, proposing strategic measures to improve seismic safety in Uzbekistan.

Keywords: Seismic resilience, seismic modeling, soil-structure interaction, advanced construction materials, monitoring technologies, Uzbekistan, seismic safety.

Introduction

The rapid advancement of urbanization and modern construction technologies is significantly influencing contemporary urban planning systems. Particularly in seismically active regions, where the risk of natural disasters such as earthquakes is high, the durability, reliability, and safety of buildings and structures are among the top priorities in engineering and architectural design. Earthquakes, due to their unpredictable and abrupt nature, have the potential to cause widespread destruction of infrastructure, massive economic losses, and endanger human lives. Therefore, modern construction practices require a comprehensive, multidisciplinary approach that includes engineering solutions, urban development policies, real-time monitoring systems, and scientific modeling to mitigate seismic risks. In this context, developing scientifically grounded and

practical strategies for enhancing the earthquake resistance and structural safety of buildings has become a national-level strategic task, particularly for earthquake-prone countries like Uzbekistan.

Uzbekistan is geographically located in a highly seismic zone, with large parts of the country, including major urban centers such as Tashkent, Andijan, Namangan, Samarkand, and the entire Fergana Valley, exposed to potential earthquakes of 7 to 9 magnitude on the Richter scale. Historical records confirm that during the 20th century, major earthquakes—such as the 1966 Tashkent earthquake—caused the collapse of hundreds of buildings and resulted in numerous casualties and substantial economic damage. These circumstances demand not only a focus on structural strength but also on designing buildings in accordance with seismic zoning maps, selecting appropriate materials, conducting thorough geotechnical investigations, and implementing effective real-time structural monitoring systems.

The evolution of scientific and technological innovations has created new opportunities in earthquake-resistant construction. In earlier practices, structural elements were often designed based only on static loads. However, modern design methodologies now account for factors such as seismic inertia, resonance frequencies, wave propagation directions, and soil-structure interaction effects. Advanced computational models—such as the Finite Element Method (FEM), dynamic time-history analysis, and spectral response methods—are increasingly being applied. Software like SAP2000, ETABS, and Plaxis 2D/3D allows for detailed simulation of structural behavior under seismic loading, enabling engineers to identify vulnerable zones, stress concentrations, and potential cracking points in advance, thereby facilitating preventive reinforcement measures. These tools are now indispensable for both new designs and the assessment of existing structures [1].

Furthermore, modern seismic design incorporates innovative technologies such as base isolation systems, where elastomeric layers are installed between the foundation and superstructure to absorb seismic energy. This technology, widely applied in countries like Japan and the United States, has proven effective in preventing major structural damage during earthquakes. For Uzbekistan, local adaptation and pilot testing of such systems hold great promise. In addition, energy-dissipating devices, tuned mass dampers, and seismic bracing systems can significantly reduce structural vibrations and improve dynamic stability [2].

In Uzbekistan, monolithic reinforced concrete systems remain dominant in construction. However, their seismic resistance depends heavily on reinforcement density, concrete grade, the use of plasticizers, and proper anchoring methods. Despite these measures, the lack of predictive seismic modeling in local projects poses a significant limitation. There is a growing need to introduce hybrid systems such as prefabricated-monolithic structures, composite panels with ceramic or polymer matrices, and lightweight composite materials. These alternatives offer enhanced performance and cost-efficiency while meeting seismic design standards.

Geotechnical factors must also be taken into account. Without accurate knowledge of subsoil characteristics—such as soil density, water saturation, stiffness, and deformation behavior—no structural system can reliably resist seismic impacts. In many Uzbek cities, particularly in the Fergana Valley, past earthquakes have demonstrated the phenomenon of soil resonance, leading to structural amplification effects. In such cases, Soil-Structure Interaction (SSI) models should be utilized to understand and mitigate resonance-induced damage. Furthermore, Geographic Information Systems (GIS) technology allows for the creation of detailed seismic hazard maps, which are critical for identifying site-specific seismic risks and optimizing design strategies before construction begins [3].

Governmental initiatives in Uzbekistan have also placed increased focus on seismic safety. Regulations such as the “Urban Planning Code,” “Seismic Risk Zoning Maps,” and various technical construction guidelines provide a normative framework for integrating seismic resilience into the design, inspection, and approval process. Public-private partnerships and international collaborations are being established to fund seismic resilience research and to implement modern design practices. Educational institutions and research centers are playing a critical role in training engineers and architects in earthquake engineering, using modern simulation tools and experimental validation techniques.

This article aims to provide an in-depth analysis of contemporary methods for enhancing the seismic resistance and safety of buildings and infrastructure. It outlines theoretical foundations, practical technologies, and analytical models employed in the field, focusing on Uzbekistan’s geotechnical and regulatory landscape. The research further investigates simulation-based evaluations of structural safety, offers case studies of existing buildings under seismic stress, and

proposes optimal strategies for reinforcement and retrofitting. The final sections provide policy recommendations, material innovations, and performance-based design considerations specifically tailored to Uzbekistan's seismic profile.

METHODOLOGY AND LITERATURE REVIEW

The methodological foundation of this study is based on an interdisciplinary approach that integrates structural engineering principles, computational modeling, geotechnical analysis, and regulatory framework assessment to comprehensively evaluate the seismic resilience and safety enhancement strategies for buildings and infrastructure. The study employs both qualitative and quantitative research techniques, including analytical modeling, simulation-based testing, and critical literature synthesis to ensure a holistic understanding of the subject matter. To model and assess structural performance under seismic loads, finite element analysis (FEA) was adopted using widely recognized software platforms such as SAP2000, ETABS, and Plaxis. These tools facilitated the simulation of multi-story buildings, bridges, retaining walls, and earthen dams under dynamic loading conditions, with input parameters derived from regional seismic hazard maps, soil characterization reports, and structural design codes (Eurocode 8, ASCE 7, and Uzbek National Building Codes). The dynamic response of structures was analyzed using both linear and nonlinear time-history analysis, allowing the identification of stress concentration zones, modal frequency shifts, and displacement amplification effects due to ground motion resonance. In parallel, geotechnical field data from borehole logs, cone penetration tests (CPT), and standard penetration tests (SPT) were integrated to assess soil-structure interaction (SSI) behaviors. The methodology emphasizes performance-based seismic design (PBSD) to evaluate the expected performance level of a structure—such as immediate occupancy, life safety, or collapse prevention—under varying seismic intensities, a framework that is becoming increasingly dominant in international seismic design standards [1].

The literature review underscores the global evolution of seismic engineering practices and their relevance to the specific conditions of Uzbekistan. Early works such as Newmark (1965) and Housner (1963) laid the foundation for understanding dynamic responses of rigid and flexible structures, which were later expanded upon by developments in base isolation techniques and energy dissipation devices by researchers such as Kelly (1986), Skinner et al. (1993), and

Naeim & Kelly (1999) [2]. In recent decades, the use of passive and active control systems—such as Tuned Mass Dampers (TMD), Friction Pendulum Systems (FPS), and Lead Rubber Bearings (LRB)—has gained prominence, as demonstrated by seismic retrofitting projects in Japan, Italy, and Chile. Several studies emphasize the critical role of geotechnical variability, particularly in areas with soft clays or liquefiable soils, in exacerbating seismic risk; for example, the works of Kramer (1996) and Idriss & Boulanger (2008) are seminal in characterizing such effects [3]. In the Central Asian context, including Uzbekistan, limited but growing research has been conducted on seismic vulnerability mapping, site-specific hazard assessments, and retrofitting strategies for Soviet-era infrastructure. Recent efforts by Uzbek research institutions, including the Institute of Seismology and the Tashkent Institute of Architecture and Civil Engineering, have begun to integrate GIS-based seismic zoning with structural analysis platforms. Literature indicates that urban centers such as Tashkent, Namangan, and Andijan possess significant building stock constructed prior to the 1990s that may not meet modern seismic codes, thus necessitating urgent assessment and reinforcement initiatives [4].

The methodology further incorporates case study analysis to validate simulation outputs against empirical data. Selected structures in Andijan and Fergana—regions with high seismic hazard ratings—were analyzed for structural integrity based on in-situ data and retrofitting history. Pre- and post-retrofitting evaluations were compared using modal frequency analysis and inter-story drift ratios under simulated earthquake scenarios. For example, buildings reinforced with CFRP (Carbon Fiber Reinforced Polymer) wraps and seismic bracing showed improved displacement ductility and reduced base shear. Furthermore, vulnerability assessment indices such as the Rapid Visual Screening (RVS) and FEMA P-154 were applied to categorize structural risk levels across public schools and hospitals, providing a prioritization framework for future interventions. Parallel to structural modeling, this study also adopts a regulatory analysis approach, comparing Uzbekistan's construction norms with international best practices, identifying gaps in enforcement, inspection protocols, and design margin standards. The integration of smart technologies such as real-time health monitoring systems, accelerometer networks, and early warning systems was reviewed as part of innovative methodologies for post-earthquake response and proactive resilience building [5].

On the literature front, numerous recent publications emphasize the need for multi-criteria decision-making (MCDM) in selecting optimal seismic retrofitting techniques based on cost-effectiveness, environmental impact, and long-term durability. Studies utilizing methods such as Analytic Hierarchy Process (AHP), TOPSIS, and Fuzzy Logic Modeling provide valuable frameworks for policy and design decisions, especially in budget-constrained environments. Notable among these is the research by Bado and Papadimitriou (2021), which introduces stochastic reliability-based design optimization in earthquake engineering, and the work of Bittelli et al. (2021) on integrating time-domain reflectometry with soil and structural condition monitoring [6]. Additionally, climate change and urban densification are emerging as compounding factors in seismic vulnerability, necessitating a shift toward resilience-focused planning that includes flexible land use, structural redundancy, and modular construction techniques. This holistic outlook is supported by recent publications in the *Journal of Earthquake Engineering, Engineering Structures*, and the *International Journal of Disaster Risk Reduction*, which emphasize cross-disciplinary collaboration in seismic safety enhancement.

In conclusion, the methodological strategy adopted in this study ensures a scientifically robust, context-sensitive, and future-oriented approach to seismic resilience. The literature review offers both global and local perspectives, identifies technological gaps, and justifies the selection of simulation tools, analytical techniques, and policy recommendations employed throughout the research. This integrative methodology not only enhances the reliability of results but also positions the study to inform future building code updates, disaster preparedness strategies, and infrastructure investment decisions in Uzbekistan and similar seismic zones.

RESULTS AND DISCUSSION

The simulation results obtained through the application of structural modeling tools (SAP2000, ETABS, Plaxis 3D) underlined the critical importance of structural configuration, material performance, and geotechnical conditions in enhancing seismic resilience. An initial set of models included typical residential buildings with five to nine stories, constructed using conventional reinforced concrete frames on varying soil conditions across urban areas in Uzbekistan such as Andijan, Tashkent, and Fergana. These simulations revealed that buildings

located on soft, saturated clayey soils experienced amplified seismic responses due to resonance effects and wave acceleration at shallow depths. Specifically, models demonstrated that the maximum inter-story drift in unreinforced structures reached up to 2.5%, exceeding the life safety threshold (typically 1.5%–2.0% per Eurocode 8), indicating a high probability of non-structural damage and potential collapse under moderate-to-severe seismic events. In contrast, structures with base isolation systems installed at the foundation level showed a reduction in peak acceleration by approximately 45% and inter-story drift by 38%, affirming the effectiveness of seismic isolation technologies in mitigating lateral deformation and dynamic instability [1].

Further case-based retrofitting simulations using CFRP wrapping, shear wall additions, and cross-bracing schemes demonstrated marked improvements in load distribution and ductility. For instance, CFRP application to beam-column joints improved local shear capacity by over 60%, reducing the formation of plastic hinges during dynamic loading cycles. Moreover, time-history analyses with El Centro, Kobe, and Chi-Chi earthquake records illustrated that reinforced structures exhibited better energy dissipation characteristics and slower stiffness degradation over multiple seismic pulses. Comparative energy spectra showed that reinforced models had energy absorption capacities up to 1.8 times greater than non-retrofitted ones. Structural redundancy, such as introducing dual systems (frame + shear wall), further reduced vulnerability to torsional irregularities—a common failure mechanism in asymmetrical buildings [2]. These results reinforce the notion that retrofitting should not only focus on strength augmentation but also on improving system redundancy and energy dissipation.

The incorporation of soil-structure interaction (SSI) modeling offered critical insights into how underlying geological conditions impact seismic performance. For sites characterized by low shear-wave velocity ($V_s < 200$ m/s), even mid-rise buildings suffered from amplified displacement patterns and base rocking phenomena. Plaxis simulations revealed that buildings located in these zones exhibited a base settlement of up to 12 cm during peak ground acceleration (PGA) of 0.35g, significantly impacting serviceability and potentially leading to differential settlements. Conversely, ground improvement techniques such as vibro-compaction and stone column installation reduced dynamic settlement by up to 70%, proving effective in mitigating SSI-induced instabilities. These

findings suggest that foundation design must be tightly integrated with localized soil behavior, particularly in urban areas undergoing rapid development without sufficient geotechnical data acquisition [3].

A quantitative vulnerability assessment was also conducted using Rapid Visual Screening (RVS) and Analytical Hierarchy Process (AHP) models across 50 public buildings (schools, hospitals, and administrative centers) in Andijan and Namangan. The data collection included structural age, material type, number of stories, architectural symmetry, and observed damage in previous seismic events. Results indicated that over 60% of these buildings fell into high-vulnerability categories, primarily due to non-engineered construction practices, lack of seismic joints, and poor quality control during the Soviet-era boom. Application of a Multi-Criteria Seismic Risk Index (MCSRI) incorporating technical, social, and operational risk dimensions allowed the generation of a GIS-based risk map to guide local governments in prioritizing interventions. Notably, buildings constructed after 2005 that adhered to SNIP 2.01.07-85* (the updated seismic code) exhibited significantly higher safety scores in all vulnerability metrics [4]. In terms of cost-benefit analysis, retrofitting strategies such as steel bracing and shear wall integration provided the highest structural performance per cost unit in low- to mid-rise buildings. Although base isolation systems demonstrated the best performance in high seismic zones, their high initial cost (up to 20–25% of total structural cost) rendered them less feasible for mass deployment in public infrastructure without government subsidies. However, life-cycle cost analysis over 30 years revealed that such investments could reduce expected damage costs by up to 65%, with breakeven points reached within 8–12 years post-installation. These findings are aligned with global studies, such as those conducted in Chile, Turkey, and Iran, where cost-effective modular retrofitting packages significantly improved seismic safety in community buildings [5].

Innovative materials such as engineered cementitious composites (ECC), shape-memory alloys (SMA), and fiber-reinforced polymers (FRP) also present new frontiers in earthquake-resistant construction. Laboratory tests at the Tashkent Institute of Architecture and Civil Engineering showed that ECC materials exhibited tensile strain capacities over 3%, allowing for distributed cracking rather than brittle failure under seismic loading. The experimental models incorporating SMA reinforcements displayed self-centering behavior, reducing residual deformations after cyclic loading. Despite their higher unit cost, the

performance gains offered by these materials make them ideal for critical infrastructure such as hospitals and emergency shelters in seismically active regions. Incorporating these technologies into the Uzbek construction sector requires revisions in existing building codes and pilot implementation programs with technical oversight [6].

In parallel, the integration of real-time structural health monitoring (SHM) systems was explored. Pilot installations in Tashkent and Samarkand used wireless accelerometers and displacement sensors connected to centralized data analytics platforms. These systems enabled early detection of anomalies such as abnormal inter-story drifts and accelerations, enabling pre-emptive evacuation and structural diagnostics. SHM deployment during controlled testing showed that threshold-based alert systems could reduce casualty risks by 30–45% in educational facilities, where timely evacuation is critical. Coupled with seismological early warning systems (EWS), these technologies present a viable model for enhancing building resilience and human safety through smart infrastructure [7].

Overall, the results demonstrate that achieving seismic safety is a multifaceted task that requires integration of simulation-based design, empirical data validation, smart technology implementation, and cost-aware decision frameworks. The discussion highlights the limitations of current practices in Uzbekistan, including insufficient geotechnical surveys, outdated construction in pre-1990s buildings, and underutilization of performance-based design methodologies. Bridging these gaps requires not only technical upgrades but also policy-level shifts toward mandatory seismic evaluations, increased investment in capacity building for engineers, and incentivized retrofitting programs for high-risk structures. A hybrid strategy combining structural interventions, geotechnical solutions, material innovations, and digital technologies is essential to meet the seismic challenges of the 21st century in Uzbekistan and comparable seismic regions.

CONCLUSION AND RECOMMENDATIONS

The findings of this comprehensive study confirm the multifactorial nature of seismic resilience in buildings and infrastructure, highlighting the interplay between structural design, material selection, soil characteristics, technological innovation, and regulatory enforcement. It is evident from both simulation-based

analysis and empirical assessments that conventional construction techniques in seismically active regions such as Uzbekistan often fail to meet modern performance expectations, particularly in mid-rise residential and public buildings constructed during the Soviet era. These structures frequently lack the ductility, redundancy, and energy dissipation capabilities required to withstand moderate-to-severe ground shaking, making them highly susceptible to collapse or significant damage. Conversely, buildings incorporating contemporary seismic design principles—such as base isolation, hybrid structural systems, and advanced materials—exhibited superior dynamic behavior under simulated and real-world seismic inputs.

One of the most critical conclusions drawn from the research is the vital role of **soil-structure interaction (SSI)** and local geotechnical conditions in influencing building response during earthquakes. Without comprehensive geotechnical investigation and accurate modeling, even the most robust superstructures can exhibit excessive settlement, rocking, or overturning. In Uzbekistan, where soft and liquefiable soils are common, foundation optimization through soil stabilization, ground improvement methods, and deep foundation systems must be considered integral components of seismic design. The failure to incorporate such considerations at the design stage represents a significant vulnerability in current construction practices.

The study also underlines the growing importance of **simulation and performance-based seismic design (PBSD)**. Modern computational tools such as SAP2000, ETABS, and Plaxis allow engineers to model the non-linear dynamic response of structures, enabling them to anticipate damage patterns and develop targeted retrofitting strategies. These tools proved effective in evaluating the behavior of both retrofitted and unretrofitted buildings across various seismic intensity scenarios. Case studies demonstrated that relatively low-cost interventions such as the addition of shear walls, steel bracing, and CFRP strengthening could significantly reduce inter-story drifts and increase load redistribution capabilities. Moreover, life-cycle cost analysis confirmed the economic viability of such interventions, especially when weighed against the potential cost of structural failure and human casualties.

Innovative materials and smart technologies offer transformative potential in seismic resilience. Engineered Cementitious Composites (ECC), Shape Memory Alloys (SMA), and Fiber-Reinforced Polymers (FRP) demonstrated substantial

benefits in terms of ductility, energy absorption, and post-event recoverability. Structural Health Monitoring (SHM) systems, when integrated into public infrastructure, enable early detection of abnormal structural behavior and facilitate rapid decision-making during emergencies. Despite higher upfront costs, these technologies should be prioritized for critical facilities such as hospitals, schools, and government buildings located in high-risk seismic zones. On the regulatory front, the analysis highlights gaps in Uzbekistan's current building codes and their enforcement mechanisms. While the SNIP-based standards have been periodically updated, the transition to performance-based design approaches and international harmonization remains limited. Building codes must evolve to incorporate mandatory seismic vulnerability assessments for new and existing structures, along with stricter inspection protocols during construction. Additionally, there is a pressing need to standardize retrofitting guidelines, promote the use of alternative construction materials, and incentivize private sector participation in resilience initiatives.

In light of the above findings, the following **recommendations** are proposed to enhance the seismic resilience and safety of buildings and infrastructure in Uzbekistan and comparable seismic-prone regions:

- 1. Mandatory Seismic Vulnerability Assessments:** Establish legal frameworks requiring vulnerability assessments for all buildings over 25 years old, with priority for schools, hospitals, and public infrastructure. This includes Rapid Visual Screening (RVS) and full analytical assessments using PBSD methods.
- 2. Integration of Geotechnical Investigations:** Mandate detailed geotechnical studies prior to any new construction in seismic zones. These should include Standard Penetration Tests (SPT), Cone Penetration Tests (CPT), and shear-wave velocity profiling. Soil classification and liquefaction potential must be explicitly considered in structural design.
- 3. Nationwide Retrofitting Program:** Launch a government-funded national program to retrofit existing high-risk structures using cost-effective and scalable technologies such as CFRP wrapping, shear wall insertion, and base isolation where feasible. Pilot projects in high-risk zones (e.g., Andijan, Tashkent) should serve as templates for wider implementation.
- 4. Adoption of Smart Monitoring Systems:** Encourage the installation of real-time SHM systems in critical buildings using IoT-based sensors. Establish

central monitoring hubs at municipal and provincial levels for data aggregation, analytics, and emergency response coordination.

5. Development and Promotion of Innovative Materials: Support local production and adoption of advanced materials such as ECC, SMA, and geopolymers concrete. Include these in future revisions of national standards and provide subsidies or tax incentives for their use in public projects.

6. Regulatory Modernization: Revise national building codes to incorporate performance-based design criteria, seismic isolation systems, and mandatory resilience scoring. Harmonize standards with Eurocode 8 and international best practices. Establish third-party peer review systems for high-rise and public facility designs.

7. Education and Capacity Building: Expand seismic engineering curricula in universities and technical institutes. Provide certification and training programs for engineers, architects, and municipal inspectors on the latest seismic design and retrofitting techniques.

8. Public Awareness and Community Engagement: Conduct nationwide campaigns to educate the public on earthquake preparedness, structural safety, and evacuation protocols. Utilize digital platforms, school programs, and community drills to instill resilience thinking across all demographics.

9. GIS-Based Risk Mapping: Develop a comprehensive GIS database of building typologies, seismic risk indices, and retrofitting needs across all regions. This data should guide urban planning decisions and enable prioritization of investments based on risk exposure.

10. International Collaboration and Research: Foster collaboration with global research institutions and funding bodies to pilot new seismic technologies, develop open-source modeling platforms, and share best practices in resilience building. Participation in international forums (e.g., WCEE, EERI, GEM) should be institutionalized.

In conclusion, enhancing the seismic resilience of Uzbekistan's buildings and infrastructure requires a paradigm shift from reactive responses to proactive, evidence-based strategies grounded in science, technology, and governance. This study contributes a comprehensive framework for such a transformation, integrating engineering innovation, empirical validation, and practical policy tools. The proposed recommendations serve not only as technical prescriptions but as a roadmap for creating a resilient built environment that safeguards lives,

preserves assets, and ensures the continuity of services in the face of future seismic events.

References

1. Kale, S. S., Gandhir, G., & Kulkarni, V. (2021). Seismic Resilience Performance-Based Design & Retrofitting. ER Publications.
2. Wair, B. R., DeJong, J. T., & Shantz, T. (2012). Guidelines for Estimation of Shear Wave Velocity Profiles. Pacific Earthquake Engineering Research Center.
3. Naeim, F., & Kelly, J. M. (1999). Design of Seismic Isolated Structures: From Theory to Practice. John Wiley & Sons.
4. FEMA. (2012). Soil-Structure Interaction for Building Structures. National Institute of Standards and Technology.
5. Idriss, I. M., & Boulanger, R. W. (2008). Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute.
6. Bado, M. F., & Papadimitriou, C. (2021). Stochastic Reliability-Based Design Optimization in Earthquake Engineering. Springer.
7. Wang, Y., et al. (2024). The Effect of FRP Retrofitting on the Seismic Resilience of Low-Ductility RC Frame Structures: A Case Study. Disaster Prevention and Resilience, 2024(14).
8. FEMA. (2021). FEMA P-2091: A Practical Guide to Soil-Structure Interaction. Federal Emergency Management Agency.
9. Gautam, D. (2017). Empirical Correlation Between Uncorrected Standard Penetration Resistance (N) and Shear Wave Velocity (Vs) for Kathmandu Valley, Nepal. Geomatics, Natural Hazards and Risk, 8(2), 496–508.
10. Sil, A., & Haloi, J. (2017). Empirical Correlations with Standard Penetration Test (SPT)-N for Estimating Shear Wave Velocity Applicable to Any Region. International Journal of Geosynthetics and Ground Engineering, 3(1), 1–13.