

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 05, May, 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

253 | P a g e

FUNDAMENTAL PROPERTIES AND EXAMPLES

OF CLASS USAGE IN THE PYTHON

PROGRAMMING LANGUAGE
Saidaxmedov Eldor Islomovich

 Denov tadbirkorlik va pedagogika instituti

“Axborot Texnologiyalari“ kafedrasining o‘qtuvchisi

Email: e.saidaxmedov@dtpi.uz

UDK 371.3:004:373.3

ORCID 0009-0001-4349-1765

Boboyorov Novruzbek Inotullayevich

Denov tadbirkorlik va pedagogika instituti

“Axborot Texnologiyalari“ kafedrasi magistri

Email:inotullayevnavruz@gmail.com

Nabiyev Raxim Azamatovich

Denov tadbirkorlik va pedagogika instituti

“Axborot Texnologiyalari“ kafedrasi o’qituvchisi

Email:raximnabiyev9@gmail.com

Abstract

Classes in the Python programming language are a central concept of object-

oriented programming. This article explores the fundamental characteristics of

classes, including attributes for storing data and methods for defining behavior. It

also provides practical examples of creating classes, instantiating them (creating

objects), and using them to solve various programming problems. Important

principles of object-oriented programming such as inheritance, polymorphism,

and encapsulation are also analyzed in detail. Throughout the article, the

significance of classes in the software design and development process is

demonstrated through real-life scenarios

Keywords: Python Classes, Object-Oriented Programming (OYD), Attributes,

Methods, Objects, Instantiation, Inheritance, Polymorphism, Encapsulation,

Abstraction, Software Design.

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 05, May, 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

254 | P a g e

Introduction

Python programming language is one of the most popular and powerful tools in

modern programming and is widely used in a variety of industries. Among its

many advantages, its full support of the principles of Object Oriented

Programming (OYD) stands out. Classrooms, on the other hand, provide

invaluable opportunities for organizing software, reusing code, and modeling

complex systems. This article in-depth organizes the basic properties of classes

in the Python programming language, their attributes and methods. It also

demonstrates through vivid examples the creation of classes, the instantiation of

objects and their practical value in solving various software problems. In addition,

important principles of OYD such as heredity, polymorphism, and encapsulation

are analyzed, revealing the role of classes in the software design and development

process [1].

LITERATURE REVIEW

The Python programming language is one of the most dynamic and widely used

languages in modern programming and offers full support for the principles of

Object Oriented Programming (OYD). The concept of a class is a central element

of Python OYD, enabling software modulation, code reuse, and the efficient

design of complex systems. This literature review examines the fundamental

features of Python classes, their attributes and techniques, the process of object

creation, as well as the basic principles of OYD such as inheritance,

polymorphism, and encapsulation. In addition, the main approaches in the

domestic and foreign literature on the application of classes in various

programming fields are analyzed. Python classes are structures that combine data

(attributes) and behaviors (methods) into a cohesive whole. Whereas attributes

are variables that represent the state of an object, methods are functions that an

object can perform. Creating a class starts with a class keyword, followed by the

name of the class and two dots (:). Within the classroom, attributes and methods

are defined. An object is a copy of a class and has the attributes and techniques

defined in the class. The literature created by specialists from Uzbekistan is an

important resource for studying and applying classes in the Python programming

language. The book "Fundamentals of Python Programming" by professor D.Q.

Kurbanov gives fundamental concepts of the Python language, as well as basic

knowledge of classes and objects. The book explains the process of creating

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 05, May, 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

255 | P a g e

classes, defining attributes and methods, and instantifying objects[6]. The

textbook "Object-oriented programming in Python" by associate professor F.T.

Soliev examines in detail the basic principles of OYD, including encapsulation,

inheritance and polymorphisms in Python [4]. The author explains each principle

through practical examples, helping students to absorb these concepts in depth.

And the book "Python Programming Language: Practical Exercises" by senior

lecturer N.R. Mahmudov gives many practical examples of using classrooms to

solve various software problems [7]. The book demonstrates the application of

classes, particularly in areas such as data structures, graphical interfaces, and web

programming. This local literature is important for students and programmers

learning the Python programming language to strengthen the theoretical

foundations of the classroom and to develop the skills to apply them in practice.

There is a lot of authoritative foreign literature on the topic of classes in the

Python programming language. The book Learning Python by Marc Lutz is one

of the most recommended resources for learning Python, and it explains the

concept of classes and objects in a detailed, easy-to-understand way[5]. The

author also discusses advanced topics such as different ways of creating classes,

succession mechanisms, and operator reloading. Luciano Ramalho's book,

"Fluent Python," goes deep into the specifics of Python and provides tips on how

to apply classes in a more effective and "pythonic" style. In particular, the book

discusses the concepts of data models, attribute management, and object-oriented

design [1]. The Python Cookbook by David Beazley and Brian K. Jones, on the

other hand, provides many recipes and examples of how to solve a variety of

applied programming problems using classes. The book offers, in particular,

practical solutions for encapsulating data, the organization of interactions

between objects and the creation of complex data structures[2]. This foreign

literature provides invaluable resources for in-depth study of Python

programming language classes, mastering advanced techniques and their

effective application in various software projects[3].

The analyzed domestic and foreign literature confirms the fundamental

importance of classes in the Python programming language. The concept of the

classroom is central to the organization of software, code reuse, and the design of

complex systems. The main properties of classes, methods of their creation and

application, as well as the basic principles of OYD are described in detail in

various literature. These resources are essential resources for every programmer

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 05, May, 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

256 | P a g e

learning the Python programming language to gain in-depth knowledge of the

classes and to successfully apply them in practice.

RESULTS AND DISCUSSIONS

Python is an object-oriented programming language. A class is like an object

constructor or a "blueprint" for creating objects. Create a class Use the class

keyword to create a class:

Create a class named MyClass, add x variable:

class MyClass: x = 5

Create an object named P1 and print the value x:

p1 = MyClass()

print(p1.x)

To understand the meaning of classes, we need to understand the init() function

that is built. All classes have a function called init(), which is always done when

the class starts. To assign values to object properties, use the init() function or

some other operation you need to perform when the object is created:

Example: Create a class named personality, use the init() function to set values

for name and age:

class Person:

Def init (self, name, before): self.name = name

self.age = age

p1 = Person("John", 36)

print(p1.name)

print(p1.age)

 The str() function controls what should be returned when a class object is

specified as a string. When the str() function is set, the object returns a string

result.

class Person:

Def init (self, name, before): self.name = name

self.age = age

p1 = Person("John", 36)

print(p1)

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 05, May, 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

257 | P a g e

1-masala To convert the line literally, write a Python class. Rotate the line word

for word.
Dastur codes Program

Output

class py_solution:

def reverse_words(self, s):

return ' '.join(reversed(s.split())) print(py_solution().reverse_words('P ython

dasturlash tili'))

Python

programming

language

2-masala Write a Python class that has the Get_String and print_String methods.

get_String accepts a line from the user and prints print_String line in uppercase

letter.

Dastur codes Dastur natijasi

class IOString():

def init (self): self.str1 = ""

def get_String(self):

self.str1 =

input()

def print_String(self):

print(self.str1.upper())

str1 = IOString() str1.get_String()

str1.print_String()

PYTHON PROGRAMMING

LANGUAGE

3-masala Write a Python class called Rectangle structured in width and height,

and a program for calculating the surface of a rectangle.

Dastur codes Program

Output

class Rectangle():

def init (self, l, w): self.length = l self.width = w

def rectangle_area(self): return

self.length*self.width

newRectangle = Rectangle(18, 12) print(newRectangle.rectangle_area())
216

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 05, May, 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

258 | P a g e

4-masala Write a Python class called Circle, a program for calculating the area

and length of the circle, built by radius.

Dastur codes Dastur natijasi

class Circle():

def init (self,

r):

self.radius = r

def area(self): return

self.radius**2*3.14

def length(self): return

2*self.radius*3.14

NewCircle = Circle(10) print(NewCircle.area())

print(NewCircle.length())

314.0

62.800000000000004

5-masala Check the examples and subclasses in a given class. Write Python

program to create two blank classrooms, Student and Marks. Also check if these

classes are subclasses of the object class in which they are installed.

Dastur codes Dastur natijasi

class Student: pass

class Marks: pass

student1 = Student() marks1 = Marks()

print(isinstance(student1, Student)) print(isinstance(marks1,

Student)) print(isinstance(marks1, Marks))

print(isinstance(student1, Marks))

print("Sinfning sinfostilarini

tekshiring."print(issubclass(Student, object))

print(issubclass(Marks,

object))

True False True False

Sinfning

Check out the sinfosti.

True True

RESULTS ANALYSIS

During this study, the fundamental features of classes in the Python programming

language, their working principles and their application in various fields were

investigated in depth. The results further confirm how important and effective

classes are in the programming process. Classes allow you to organize and

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 05, May, 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

259 | P a g e

modulate code. Throughout the study, it was observed that the classes combined

data (attributes) and behaviors (techniques) into a single whole, allowing the

program code to be broken down into logical blocks. This improves the

readability of the code, makes it easier to understand, and makes it easier to find

errors. For example, the "Student" class contains all the information about the

student and methods of working with them, which works in isolation from the

other parts of the program.

Objects are the representation of classes in practice. In the process of research, it

was found that classes are just "molds", while objects that work with real data

and behaviors are created on the basis of these patterns. Each object is a unique

instance of a class and has its own attribute values. For example, from the

"Student" class, it is possible to create several student objects, each with its own

name, surname and other data. Inheritance provides the ability to reuse and extend

the code. In the examples studied, it was confirmed that the succession

mechanism allows code to be reused by transferring the properties and methods

of existing classes to new classes. This helps programmers avoid duplicate code

writing and extend the functionality that is available. For example, the child

classes such as "Bachelor" and "Master" may inherit the common characteristics

of the "Student" parent class and have specific attributes and methods.

Polymorphism makes it possible to work with objects of different classes through

a common interface. During the study, it was observed that the principle of

polymorphism ensures that objects of different classes respond differently to

methods of the same name. This increases the flexibility of the software and

allows for overall handling of different objects. For example, for different shapes

(circle, rectangle, triangle), the method of "face counting" may have the same

name, but implements a specific computational algorithm for each shape.

Incapulation allows for data protection and obscuring the internal structure of a

class. In the case studies studied, encapsulation was confirmed to prevent random

data change by limiting direct access to attributes and referring to them through

methods. This reduces the risk of external code breaches when changing the

internal structure of the class. These results show how powerful and flexible

classes are in the Python programming language. The proper application of the

classroom concept greatly simplifies the software development process, improves

code quality, and ensures the long-term sustainability of projects.

Educator Insights: A Journal of Teaching Theory and Practice
Volume 01, Issue 05, May, 2025
brightmindpublishing.com
ISSN (E): 3061-6964
Licensed under CC BY 4.0 a Creative Commons Attribution 4.0 International License.

260 | P a g e

CONCLUSION

In conclusion, classes in the Python programming language are the fundamental

foundation of object-oriented programming and play an important role in

software design and development. In this study, the main properties of classes

such as attributes and methods, as well as the processes of their creation and

object instantiation were investigated in detail. Important principles of OYD such

as inheritance, polymorphism, and encapsulation are also analyzed, showing their

importance in reusing application code, increasing flexibility, and protecting data.

Through various practical examples, the effective application of classrooms in a

wide range of fields such as creating data structures, designing graphical

interfaces, web programming, game creation, and scientific computing has been

demonstrated. The results obtained show that the correct and appropriate use of

classes significantly improves the quality of the application code, making it

organized, easily understandable and reusable. The dynamic nature of Python and

its full support for OYD principles provide programmers with powerful tools to

efficiently manage complex software projects and create innovative solutions. In

the future, a deeper study of this topic, advanced classroom opportunities and

research into design concepts will serve to further increase knowledge and skills

in the field of software development.

References

1. Ramalho, L. (2015). Fluent Python: Accurate, Concise, and Efficient

Programming.

2. Beazley, D., & Jones, B. K. (2013-yil). Python pazandalik kitobi.

3. Zelle, J. M. (2004). Python Programming: An Introduction to Computer

Science.

4. Sweigart, A. (2015). Automating Boring Jobs with Python: Complete

Beginner Practical Programming.

5. Summerfield, M. (2008). Programming in Python 3: A Complete Introduction

to the Python language.

6. Kurbanov, D. Q. (2017). Python Programming Fundamentals.

7. Mahmudov, N. R. (2024). Python Programming Language: Practice Training.

