

INNOVATIVE TECHNOLOGY APPLICATION IN EDUCATION

Dilshodakhon Muminova

International Islamic Academy of Uzbekistan PhD,

Associate Professor of the Department of Uzbek and Foreign Languages

g-mail: dilshodamuminova110@gmail.com

Abstract

In light of the intense competition between the entertainment industry and the educational system, strategies are required to draw students in and engage them in the learning process. The trend in the development of virtual and augmented reality technologies indicates that in order to achieve the most logical combination of the educational process and the gaming process, educational elements—particularly those related to the course of school subjects—must be incorporated when developing applications.

Keywords: Computer technology, script, multimedia, augmented reality, and virtual reality.

Introduction

We use modern technologies more and more in our world nowadays. We are used to being surrounded by contemporary technologies, so when they are absent, we feel uneasy. Both teachers and students now have more freedom in modern pedagogy because to the usage of contemporary technology and pedagogical tools. The lesson has become more visible and effective. Additionally, new forms of education like blended and electronic learning emerged as a result of the Internet's expansion. A combination of in-person and virtual instruction, blended learning incorporates aspects of student autonomy regarding the schedule, location, and speed of their education as well as the blending of instructor-led and online learning experience.

Blended learning is the blending of conventional forms with electronic technologies, as well as network and in-person learning. The objectives of contemporary education dictate the usage of cutting-edge technologies.

Mechanisms are required to draw students in and engage them in the educational process because the entertainment industry is becoming a serious rival to the educational system. In this sense, universities and institutions abroad are already utilizing augmented and virtual reality technologies. By incorporating interactive components into the real world, augmented reality (AR) creates a singular experience. A three-dimensional interactive world made possible by computer technology is known as virtual reality (VR) [1]. Immersion in such a universe gives the audience a sense of the reality of what is taking place, hence the name. There exists a classification of educational applications and programs based on the roles of teachers and learners, as well as the sequence in which information is acquired and tasks are completed. These scenarios reflect different models of learning interaction and content delivery.

The **first type** follows a **linear instructional model**, much like a traditional textbook or lecture. Information is presented in a sequential manner, and learners progress step-by-step through the content. The student's interaction is minimal, mainly limited to selecting which modules or topics to engage with. This format is ideal for structured, foundational learning, particularly when introducing new theoretical concepts that require a clear and orderly progression.

The **second scenario** utilizes a **non-linear or network-based structure**, where learning content is divided into modules or elements connected by either static or dynamic hyperlinks. This allows learners to navigate freely between topics, shaping their own educational journey. Such systems encourage exploration, critical thinking, and autonomy, giving students control over their learning paths. Hypermedia and multimedia educational environments often employ this model, integrating text, images, audio, and video to enrich the experience.

The **third type** of application emphasizes **content creation**, enabling learners to design, compile, and present their own educational materials. This scenario nurtures creativity and innovation by allowing users to become producers of knowledge, not just consumers. It is especially effective in project-based learning environments, where students can develop presentations, simulations, or even simple digital applications as part of their coursework. Tools like digital storytelling apps, educational game builders, and virtual labs fall into this category.

The **fourth model** supports **collaborative learning**, focusing on practical application of knowledge through teamwork and interactive problem-solving.

This format usually involves multiple participants working together to achieve shared learning objectives, often under the guidance of an instructor. It's particularly suitable for real-time simulations, case studies, and group projects that require communication, negotiation, and critical decision-making. The use of collaborative tools such as shared whiteboards, breakout rooms, and real-time quizzes enhances the interactivity and adaptability of such platforms.

All four scenarios contribute uniquely to the modern educational landscape. While the first three are particularly suitable for **self-directed learning**, the fourth emphasizes **group engagement** and social interaction, which are essential in developing communication and cooperation skills. An additional dimension in contemporary educational technologies is the use of **virtual and augmented reality (VR/AR)**. These tools transform learning into an immersive experience, enabling users to engage with content in highly interactive ways. Unlike traditional methods, VR and AR rely on **sensory involvement**—including visual, auditory, and even tactile feedback—to create a convincing educational environment. While developers do not necessarily aim for photo-realistic graphics, the **sense of presence** and the **user's active role** in navigating these environments ensure deep cognitive and emotional engagement. AR, for instance, can overlay educational content onto real-world objects, while VR can place students in simulated historical events or scientific labs, offering unique opportunities for experiential learning.

Furthermore, the integration of **AI-driven adaptive learning** into these scenarios is growing. Intelligent systems can now analyze a learner's behavior, progress, and preferences to tailor content dynamically, adjusting difficulty levels and recommending resources. This adds a personalized dimension to all four scenarios, making educational experiences more responsive and effective.

There are multiple formats in which virtual reality (VR) technologies are being adapted to suit modern educational needs, each offering unique advantages and expanding the possibilities of how knowledge can be delivered and experienced.

The **first format** is **traditional in-person education** enhanced with short immersive segments. In this approach, VR is integrated into standard lectures through brief (5–7 minute) interactive experiences that immerse students in a virtual environment. These segments help visualize complex concepts and engage learners more deeply. For example, during a history lecture, students might

virtually explore ancient ruins, or in biology, examine the inner workings of a cell from a first-person perspective.

The **second format** is **remote or distance learning**, where VR bridges the gap between physical separation and collaborative learning. In this model, students participate in shared virtual environments, allowing them to attend lectures, complete joint tasks, and engage in discussions as if they were in the same room. These sessions tend to be longer than in-person classes, often lasting around 45 minutes, and offer a strong sense of presence and interactivity that traditional video conferencing cannot match.

The **third format** is **blended or hybrid learning**, ideal for situations in which students cannot be physically present in the classroom. VR headsets enable students to participate remotely in real-time lessons. This format requires a classroom setup that includes a 360-degree video camera and streaming capabilities, allowing remote students to experience the lesson from a first-person perspective and interact as though they were actually present. This setup ensures inclusion and active participation, even for those at a distance.

The **fourth format** is **self-guided or autonomous learning**. Many educational programs are being redesigned to support independent study through VR-enabled smartphones and headsets. Projects like **Physics Playground** immerse learners in three-dimensional environments where they can explore physics concepts interactively, while MIT's **MITAR Games** project merges real-world landscapes with virtual scenarios. In the educational game **Environmental Detectives**, for instance, players act as investigators tracking down the source of a toxic spill, applying scientific methods in a simulated but realistic setting.

These VR-based learning models are not limited to schools and universities. They are increasingly utilized in **professional training and corporate environments**. For instance, almost every major aircraft manufacturer and airline uses VR flight simulators for pilot and air traffic controller training. Similar technologies support the education of train conductors, first responders, and even athletes, offering realistic practice environments without physical risk. In addition to these, **medical training** has seen significant benefits from VR adoption. Aspiring surgeons can now practice complex procedures in virtual environments, reducing the need for cadavers and minimizing real-world risks. Similarly, VR scenarios for **emergency response**, such as fire safety drills or earthquake evacuations, allow learners to respond to high-stress situations in a controlled setting.

VR and AR (augmented reality) technologies offer several clear educational advantages:

- They provide **visual and interactive representations** of abstract or dangerous processes, making learning safer and more accessible.
- They frequently incorporate **gamified elements**, which increase student engagement and motivation.
- The **interactive scripting** within these programs helps guide students' attention to key components of the lesson, minimizing distractions and enhancing focus.
- They support **multi-sensory learning**, where visual, auditory, and kinesthetic inputs help reinforce memory and understanding.

Despite these benefits, several challenges still hinder the widespread implementation of VR/AR in mainstream education. One of the primary limitations is the **sheer volume of content** required to cover comprehensive educational programs. Creating high-quality VR lessons demands significant time, expertise, and resources. Additionally, the **cost of equipment and software**—such as VR headsets, powerful computers, and 360-degree cameras—remains a barrier for many institutions, especially in developing regions.

Nonetheless, institutions like Andijan State University have begun to integrate these technologies into their learning environments, particularly under restrictive conditions such as pandemic-induced quarantines. Their efforts demonstrate the adaptability and effectiveness of immersive learning, even with limited resources. Looking forward, as **hardware becomes more affordable** and **authoring tools** for VR content become more user-friendly, we can expect broader adoption of immersive technologies in both academic and vocational education. AI-powered customization, cloud-based VR platforms, and cross-device compatibility are likely to play a key role in making VR-based learning scalable, inclusive, and sustainable.

REFERENCES:

1. Андресен, Бент. Б. Мультимедиа в образовании: специализированный учеб. курс: [пер. с англ] / Бент. Б. Андерсен, Катя Ван Ден Бринк. – 2 – е изд. ; испр. и доп. – М.: Дрофа, 2007. – 221 с.
2. Зайцев В.С. Современные педагогические технологии: учебное пособие. – В 2-х книгах. – Книга 1. – Челябинск, ЧГПУ, 2012 – 411 с.

3. Лотте, Д.С. Образование системы научно-технических терминов// Основы построения научно-технической терминологии. М.: 1961. - С.71. 7.
4. Muminova, D.A. . Linguocultural competence and competence: reflection of terms in methodological dictionaries. Oriental Renaissance: Innovative, educational, natural and social sciences, 4 (11), Dec., 2024. – 113 p.
5. Muminova, D.A. . Writing in foreign language teaching. Tadqiqotlar jahon ilmiy – metodik jurnali, 53-son 2- to’plam_Yanvar-2025, -157 b.
6. Dudley-Evans, T., & St John, M. J. (1998). Developments in English for Specific Purposes: A multi-disciplinary approach. Cambridge University Press.
7. Hutchinson, T., & Waters, A. (1987). English for specific purposes: A learning-centred approach. Cambridge University Press.